sc030iot.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /*
  2. * SC030IOT driver.
  3. *
  4. * Copyright 2020-2022 Espressif Systems (Shanghai) PTE LTD
  5. *
  6. * Licensed under the Apache License, Version 2.0 (the "License");
  7. * you may not use this file except in compliance with the License.
  8. * You may obtain a copy of the License at
  9. * http://www.apache.org/licenses/LICENSE-2.0
  10. *
  11. * Unless required by applicable law or agreed to in writing, software
  12. * distributed under the License is distributed on an "AS IS" BASIS,
  13. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  14. * See the License for the specific language governing permissions and
  15. * limitations under the License.
  16. *
  17. */
  18. #include <stdint.h>
  19. #include <stdlib.h>
  20. #include <string.h>
  21. #include <stdio.h>
  22. #include "sccb.h"
  23. #include "xclk.h"
  24. #include "freertos/FreeRTOS.h"
  25. #include "freertos/task.h"
  26. #include "sc030iot.h"
  27. #include "sc030iot_settings.h"
  28. #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
  29. #include "esp32-hal-log.h"
  30. #else
  31. #include "esp_log.h"
  32. static const char* TAG = "sc030";
  33. #endif
  34. #define SC030_SENSOR_ID_HIGH_REG 0XF7
  35. #define SC030_SENSOR_ID_LOW_REG 0XF8
  36. #define SC030_MAX_FRAME_WIDTH (640)
  37. #define SC030_MAX_FRAME_HIGH (480)
  38. // sc030 use "i2c paging mode", so the high byte of the register needs to be written to the 0xf0 reg.
  39. // For more information please refer to the Technical Reference Manual.
  40. static int get_reg(sensor_t *sensor, int reg, int reg_value_mask)
  41. {
  42. int ret = 0;
  43. uint8_t reg_high = (reg>>8) & 0xFF;
  44. uint8_t reg_low = reg & 0xFF;
  45. if(SCCB_Write(sensor->slv_addr, 0xf0, reg_high)) {
  46. return -1;
  47. }
  48. ret = SCCB_Read(sensor->slv_addr, reg_low);
  49. if(ret > 0){
  50. ret &= reg_value_mask;
  51. }
  52. return ret;
  53. }
  54. // sc030 use "i2c paging mode", so the high byte of the register needs to be written to the 0xf0 reg.
  55. // For more information please refer to the Technical Reference Manual.
  56. static int set_reg(sensor_t *sensor, int reg, int mask, int value)
  57. {
  58. int ret = 0;
  59. uint8_t reg_high = (reg>>8) & 0xFF;
  60. uint8_t reg_low = reg & 0xFF;
  61. if(SCCB_Write(sensor->slv_addr, 0xf0, reg_high)) {
  62. return -1;
  63. }
  64. ret = SCCB_Write(sensor->slv_addr, reg_low, value & 0xFF);
  65. return ret;
  66. }
  67. static int set_regs(sensor_t *sensor, const uint8_t (*regs)[2], uint32_t regs_entry_len)
  68. {
  69. int i=0, res = 0;
  70. while (i<regs_entry_len) {
  71. res = SCCB_Write(sensor->slv_addr, regs[i][0], regs[i][1]);
  72. if (res) {
  73. return res;
  74. }
  75. i++;
  76. }
  77. return res;
  78. }
  79. static int set_reg_bits(sensor_t *sensor, int reg, uint8_t offset, uint8_t length, uint8_t value)
  80. {
  81. int ret = 0;
  82. ret = get_reg(sensor, reg, 0xff);
  83. if(ret < 0){
  84. return ret;
  85. }
  86. uint8_t mask = ((1 << length) - 1) << offset;
  87. value = (ret & ~mask) | ((value << offset) & mask);
  88. ret = set_reg(sensor, reg & 0xFFFF, 0xFFFF, value);
  89. return ret;
  90. }
  91. #define WRITE_REGS_OR_RETURN(regs, regs_entry_len) ret = set_regs(sensor, regs, regs_entry_len); if(ret){return ret;}
  92. #define WRITE_REG_OR_RETURN(reg, val) ret = set_reg(sensor, reg, 0xFF, val); if(ret){return ret;}
  93. #define SET_REG_BITS_OR_RETURN(reg, offset, length, val) ret = set_reg_bits(sensor, reg, offset, length, val); if(ret){return ret;}
  94. static int set_hmirror(sensor_t *sensor, int enable)
  95. {
  96. int ret = 0;
  97. if(enable) {
  98. SET_REG_BITS_OR_RETURN(0x3221, 1, 2, 0x3); // mirror on
  99. } else {
  100. SET_REG_BITS_OR_RETURN(0x3221, 1, 2, 0x0); // mirror off
  101. }
  102. return ret;
  103. }
  104. static int set_vflip(sensor_t *sensor, int enable)
  105. {
  106. int ret = 0;
  107. if(enable) {
  108. SET_REG_BITS_OR_RETURN(0x3221, 5, 2, 0x3); // flip on
  109. } else {
  110. SET_REG_BITS_OR_RETURN(0x3221, 5, 2, 0x0); // flip off
  111. }
  112. return ret;
  113. }
  114. static int set_colorbar(sensor_t *sensor, int enable)
  115. {
  116. int ret = 0;
  117. SET_REG_BITS_OR_RETURN(0x0100, 7, 1, enable & 0xff); // enable test pattern mode
  118. return ret;
  119. }
  120. static int set_sharpness(sensor_t *sensor, int level)
  121. {
  122. int ret = 0;
  123. SET_REG_BITS_OR_RETURN(0x00e0, 1, 1, 1); // enable edge enhancement
  124. WRITE_REG_OR_RETURN(0x00d0, level & 0xFF); // base value
  125. WRITE_REG_OR_RETURN(0x00d2, (level >> 8) & 0xFF); // limit
  126. return ret;
  127. }
  128. static int set_agc_gain(sensor_t *sensor, int gain)
  129. {
  130. int ret = 0;
  131. SET_REG_BITS_OR_RETURN(0x0070, 1, 1, 1); // enable auto agc control
  132. WRITE_REG_OR_RETURN(0x0068, gain & 0xFF); // Window weight setting1
  133. WRITE_REG_OR_RETURN(0x0069, (gain >> 8) & 0xFF); // Window weight setting2
  134. WRITE_REG_OR_RETURN(0x006a, (gain >> 16) & 0xFF); // Window weight setting3
  135. WRITE_REG_OR_RETURN(0x006b, (gain >> 24) & 0xFF); // Window weight setting4
  136. return ret;
  137. }
  138. static int set_aec_value(sensor_t *sensor, int value)
  139. {
  140. int ret = 0;
  141. SET_REG_BITS_OR_RETURN(0x0070, 0, 1, 1); // enable auto aec control
  142. WRITE_REG_OR_RETURN(0x0072, value & 0xFF); // AE target
  143. return ret;
  144. }
  145. static int set_awb_gain(sensor_t *sensor, int value)
  146. {
  147. int ret = 0;
  148. SET_REG_BITS_OR_RETURN(0x00b0, 0, 1, 1); // enable awb control
  149. WRITE_REG_OR_RETURN(0x00c8, value & 0xFF); // blue gain
  150. WRITE_REG_OR_RETURN(0x00c9, (value>>8) & 0XFF); // red gain
  151. return ret;
  152. }
  153. static int set_saturation(sensor_t *sensor, int level)
  154. {
  155. int ret = 0;
  156. SET_REG_BITS_OR_RETURN(0x00f5, 5, 1, 0); // enable saturation control
  157. WRITE_REG_OR_RETURN(0x0149, level & 0xFF); // blue saturation gain (/128)
  158. WRITE_REG_OR_RETURN(0x014a, (level>>8) & 0XFF); // red saturation gain (/128)
  159. return ret;
  160. }
  161. static int set_contrast(sensor_t *sensor, int level)
  162. {
  163. int ret = 0;
  164. SET_REG_BITS_OR_RETURN(0x00f5, 6, 1, 0); // enable contrast control
  165. WRITE_REG_OR_RETURN(0x014b, level); // contrast coefficient(/64)
  166. return ret;
  167. }
  168. static int reset(sensor_t *sensor)
  169. {
  170. int ret = set_regs(sensor, sc030iot_default_init_regs, sizeof(sc030iot_default_init_regs)/(sizeof(uint8_t) * 2));
  171. // Delay
  172. vTaskDelay(50 / portTICK_PERIOD_MS);
  173. // ESP_LOGI(TAG, "set_reg=%0x", set_reg(sensor, 0x0100, 0xffff, 0x00)); // write 0x80 to enter test mode if you want to test the sensor
  174. // ESP_LOGI(TAG, "0x0100=%0x", get_reg(sensor, 0x0100, 0xffff));
  175. if (ret) {
  176. ESP_LOGE(TAG, "reset fail");
  177. }
  178. return ret;
  179. }
  180. static int set_window(sensor_t *sensor, int offset_x, int offset_y, int w, int h)
  181. {
  182. int ret = 0;
  183. //sc:H_start={0x0172[1:0],0x0170},H_end={0x0172[5:4],0x0171},
  184. WRITE_REG_OR_RETURN(0x0170, offset_x & 0xff);
  185. WRITE_REG_OR_RETURN(0x0171, (offset_x+w) & 0xff);
  186. WRITE_REG_OR_RETURN(0x0172, ((offset_x>>8) & 0x03) | (((offset_x+w)>>4)&0x30));
  187. //sc:V_start={0x0175[1:0],0x0173},H_end={0x0175[5:4],0x0174},
  188. WRITE_REG_OR_RETURN(0x0173, offset_y & 0xff);
  189. WRITE_REG_OR_RETURN(0x0174, (offset_y+h) & 0xff);
  190. WRITE_REG_OR_RETURN(0x0175, ((offset_y>>8) & 0x03) | (((offset_y+h)>>4)&0x30));
  191. vTaskDelay(10 / portTICK_PERIOD_MS);
  192. return ret;
  193. }
  194. static int set_framesize(sensor_t *sensor, framesize_t framesize)
  195. {
  196. uint16_t w = resolution[framesize].width;
  197. uint16_t h = resolution[framesize].height;
  198. if(w>SC030_MAX_FRAME_WIDTH || h > SC030_MAX_FRAME_HIGH) {
  199. goto err;
  200. }
  201. uint16_t offset_x = (640-w) /2;
  202. uint16_t offset_y = (480-h) /2;
  203. if(set_window(sensor, offset_x, offset_y, w, h)) {
  204. goto err;
  205. }
  206. sensor->status.framesize = framesize;
  207. return 0;
  208. err:
  209. ESP_LOGE(TAG, "frame size err");
  210. return -1;
  211. }
  212. static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
  213. {
  214. int ret=0;
  215. sensor->pixformat = pixformat;
  216. switch (pixformat) {
  217. case PIXFORMAT_RGB565:
  218. case PIXFORMAT_RAW:
  219. case PIXFORMAT_GRAYSCALE:
  220. ESP_LOGE(TAG, "Not support");
  221. break;
  222. case PIXFORMAT_YUV422: // For now, sc030/sc031 sensor only support YUV422.
  223. break;
  224. default:
  225. return -1;
  226. }
  227. return ret;
  228. }
  229. static int init_status(sensor_t *sensor)
  230. {
  231. return 0;
  232. }
  233. static int set_dummy(sensor_t *sensor, int val){ return -1; }
  234. static int set_xclk(sensor_t *sensor, int timer, int xclk)
  235. {
  236. int ret = 0;
  237. sensor->xclk_freq_hz = xclk * 1000000U;
  238. ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
  239. return ret;
  240. }
  241. int sc030iot_detect(int slv_addr, sensor_id_t *id)
  242. {
  243. if (SC030IOT_SCCB_ADDR == slv_addr) {
  244. uint8_t MIDL = SCCB_Read(slv_addr, SC030_SENSOR_ID_LOW_REG);
  245. uint8_t MIDH = SCCB_Read(slv_addr, SC030_SENSOR_ID_HIGH_REG);
  246. uint16_t PID = MIDH << 8 | MIDL;
  247. if (SC030IOT_PID == PID) {
  248. id->PID = PID;
  249. return PID;
  250. } else {
  251. ESP_LOGI(TAG, "Mismatch PID=0x%x", PID);
  252. }
  253. }
  254. return 0;
  255. }
  256. int sc030iot_init(sensor_t *sensor)
  257. {
  258. // Set function pointers
  259. sensor->reset = reset;
  260. sensor->init_status = init_status;
  261. sensor->set_pixformat = set_pixformat;
  262. sensor->set_framesize = set_framesize;
  263. sensor->set_saturation= set_saturation;
  264. sensor->set_colorbar = set_colorbar;
  265. sensor->set_hmirror = set_hmirror;
  266. sensor->set_vflip = set_vflip;
  267. sensor->set_sharpness = set_sharpness;
  268. sensor->set_agc_gain = set_agc_gain;
  269. sensor->set_aec_value = set_aec_value;
  270. sensor->set_awb_gain = set_awb_gain;
  271. sensor->set_contrast = set_contrast;
  272. //not supported
  273. sensor->set_denoise = set_dummy;
  274. sensor->set_quality = set_dummy;
  275. sensor->set_special_effect = set_dummy;
  276. sensor->set_wb_mode = set_dummy;
  277. sensor->set_ae_level = set_dummy;
  278. sensor->get_reg = get_reg;
  279. sensor->set_reg = set_reg;
  280. sensor->set_xclk = set_xclk;
  281. ESP_LOGD(TAG, "sc030iot Attached");
  282. return 0;
  283. }