/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "string.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; UART_HandleTypeDef huart3; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for myTask02 */ osThreadId_t myTask02Handle; const osThreadAttr_t myTask02_attributes = { .name = "myTask02", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myTask03 */ osThreadId_t myTask03Handle; const osThreadAttr_t myTask03_attributes = { .name = "myTask03", .stack_size = 128 * 4, .priority = (osPriority_t) osPriorityLow, }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_USART1_UART_Init(void); static void MX_USART2_UART_Init(void); static void MX_USART3_UART_Init(void); void StartDefaultTask(void *argument); void StartTask02(void *argument); void StartTask03(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #include // 重定向fputc函数到USART1 int _write(int file, char *ptr, int len) { HAL_UART_Transmit(&huart1, (uint8_t*)ptr, len, HAL_MAX_DELAY); return len; } int fputc(int ch, FILE *f) { uint8_t c = ch; HAL_UART_Transmit(&huart1, &c, 1, HAL_MAX_DELAY); return ch; } int __io_putchar(int ch) { uint8_t c = ch; HAL_UART_Transmit(&huart1, &c, 1, HAL_MAX_DELAY); return ch; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_USART3_UART_Init(); /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* creation of myTask02 */ myTask02Handle = osThreadNew(StartTask02, NULL, &myTask02_attributes); /* creation of myTask03 */ myTask03Handle = osThreadNew(StartTask03, NULL, &myTask03_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ int i = 0; while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 115200; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief USART3 Initialization Function * @param None * @retval None */ static void MX_USART3_UART_Init(void) { /* USER CODE BEGIN USART3_Init 0 */ /* USER CODE END USART3_Init 0 */ /* USER CODE BEGIN USART3_Init 1 */ /* USER CODE END USART3_Init 1 */ huart3.Instance = USART3; huart3.Init.BaudRate = 115200; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART3_Init 2 */ /* USER CODE END USART3_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOD_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ // 全局变量用于存储接收的数据和状态 uint8_t rx_buffer; uint8_t total[50] = {'\0'} ; uint8_t rx_index = 0; uint8_t rx_complete_flag = 0; // 串口中断回调函数 void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart == &huart2) { // 接收完成,设置标志位 rx_complete_flag = 1; total[rx_index++] = rx_buffer; // 重新开启中断接收,准备接收下一个字节 HAL_UART_Receive_IT(&huart2, &rx_buffer, 1); } } void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ // 初始化时开启中断接收,接收10字节 HAL_UART_Receive_IT(&huart2, &rx_buffer, 1); /* Infinite loop */ for(;;) { // 用 printf 输出(printf 已经重定向到 USART2) printf("hello world task 1\r\n"); // 发送一个字符串到UART2 const char *msg = "12345hhl7890"; HAL_UART_Transmit(&huart2, (uint8_t*)msg, strlen(msg), HAL_MAX_DELAY); // 检查是否有数据接收完成 if (rx_complete_flag) { // 清除标志位 rx_complete_flag = 0; // 打印接收到的数据(以字符串形式) // rx_buffer[13] = '\0'; // 确保结尾安全 // printf("Received data: %s\r\n", rx_buffer); // 或者打印为 hex /* for (int i = 0; i < sizeof(rx_buffer); i++) { printf("%02x ", rx_buffer[i]); } printf("\r\n"); */ } printf("Received data: %s\r\n", total); osDelay(500); memset(total, '\0', 50); rx_index = 0; printf("111"); // 延时1秒 osDelay(1000); } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_StartTask02 */ /** * @brief Function implementing the myTask02 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask02 */ void StartTask02(void *argument) { /* USER CODE BEGIN StartTask02 */ /* Infinite loop */ for(;;) { printf("hello world task 2\r\n"); osDelay(10000000); } /* USER CODE END StartTask02 */ } /* USER CODE BEGIN Header_StartTask03 */ /** * @brief Function implementing the myTask03 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask03 */ void StartTask03(void *argument) { /* USER CODE BEGIN StartTask03 */ /* Infinite loop */ for(;;) { printf("hello world task 3\r\n"); osDelay(1000000); } /* USER CODE END StartTask03 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM3 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM3) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */