#include "audio_processor.h" #include #define PROCESSOR_RUNNING 0x01 static const char* TAG = "AudioProcessor"; AudioProcessor::AudioProcessor() : afe_data_(nullptr) { event_group_ = xEventGroupCreate(); } void AudioProcessor::Initialize(int channels, bool reference) { channels_ = channels; reference_ = reference; int ref_num = reference_ ? 1 : 0; std::string input_format; for (int i = 0; i < channels_ - ref_num; i++) { input_format.push_back('M'); } for (int i = 0; i < ref_num; i++) { input_format.push_back('R'); } afe_config_t* afe_config = afe_config_init(input_format.c_str(), NULL, AFE_TYPE_VC, AFE_MODE_HIGH_PERF); afe_config->aec_init = false; afe_config->aec_mode = AEC_MODE_VOIP_HIGH_PERF; afe_config->ns_init = true; afe_config->vad_init = true; afe_config->vad_mode = VAD_MODE_0; afe_config->vad_min_noise_ms = 100; afe_config->afe_perferred_core = 1; afe_config->afe_perferred_priority = 1; afe_config->agc_init = true; afe_config->agc_mode = AFE_AGC_MODE_WEBRTC; afe_config->agc_compression_gain_db = 10; afe_config->memory_alloc_mode = AFE_MEMORY_ALLOC_MORE_PSRAM; afe_iface_ = esp_afe_handle_from_config(afe_config); afe_data_ = afe_iface_->create_from_config(afe_config); xTaskCreate([](void* arg) { auto this_ = (AudioProcessor*)arg; this_->AudioProcessorTask(); vTaskDelete(NULL); }, "audio_communication", 4096, this, 3, NULL); } AudioProcessor::~AudioProcessor() { if (afe_data_ != nullptr) { afe_iface_->destroy(afe_data_); } vEventGroupDelete(event_group_); } void AudioProcessor::Input(const std::vector& data) { input_buffer_.insert(input_buffer_.end(), data.begin(), data.end()); auto feed_size = afe_iface_->get_feed_chunksize(afe_data_) * channels_; while (input_buffer_.size() >= feed_size) { auto chunk = input_buffer_.data(); afe_iface_->feed(afe_data_, chunk); input_buffer_.erase(input_buffer_.begin(), input_buffer_.begin() + feed_size); } } void AudioProcessor::Start() { xEventGroupSetBits(event_group_, PROCESSOR_RUNNING); } void AudioProcessor::Stop() { xEventGroupClearBits(event_group_, PROCESSOR_RUNNING); afe_iface_->reset_buffer(afe_data_); } bool AudioProcessor::IsRunning() { return xEventGroupGetBits(event_group_) & PROCESSOR_RUNNING; } void AudioProcessor::OnOutput(std::function&& data)> callback) { output_callback_ = callback; } void AudioProcessor::OnVadStateChange(std::function callback) { vad_state_change_callback_ = callback; } void AudioProcessor::AudioProcessorTask() { auto fetch_size = afe_iface_->get_fetch_chunksize(afe_data_); auto feed_size = afe_iface_->get_feed_chunksize(afe_data_); ESP_LOGI(TAG, "Audio communication task started, feed size: %d fetch size: %d", feed_size, fetch_size); while (true) { xEventGroupWaitBits(event_group_, PROCESSOR_RUNNING, pdFALSE, pdTRUE, portMAX_DELAY); auto res = afe_iface_->fetch_with_delay(afe_data_, portMAX_DELAY); if ((xEventGroupGetBits(event_group_) & PROCESSOR_RUNNING) == 0) { continue; } if (res == nullptr || res->ret_value == ESP_FAIL) { if (res != nullptr) { ESP_LOGI(TAG, "Error code: %d", res->ret_value); } continue; } // VAD state change if (vad_state_change_callback_) { if (res->vad_state == VAD_SPEECH && !is_speaking_) { is_speaking_ = true; vad_state_change_callback_(true); } else if (res->vad_state == VAD_SILENCE && is_speaking_) { is_speaking_ = false; vad_state_change_callback_(false); } } if (output_callback_) { output_callback_(std::vector(res->data, res->data + res->data_size / sizeof(int16_t))); } } }